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Internal hydraulic jumps in two-layer flows are studied, with particular emphasis
on their role in entrainment and mixing. For highly entraining internal jumps, a
new closure is proposed for the jump conditions. The closure is based on two main
assumptions: (i) most of the energy dissipated at the jump goes into turbulence,
and (ii) the amount of turbulent energy that a stably stratified flow may contain
without immediately mixing further is bounded by a measure of the stratification. As
a consequence of this closure, surprising bounds emerge, for example on the amount
of entrainment that may take place at the location of the jump. These bounds are
probably almost achieved by highly entraining internal jumps, such as those likely to
develop in dense oceanic overflows. The values obtained here are in good agreement
with the existing observations of the spatial development of oceanic downslope
currents, which play a crucial role in the formation of abyssal and intermediate
waters in the global ocean.

1. Introduction

Internal shocks are ubiquitous occurrences in the atmosphere and the ocean.
Conventionally, they are denoted bores when they propagate into a state largely at
rest, and hydraulic jumps when they consist of a standing discontinuity within a nearly
steady flow. Examples in the atmosphere are bores associated with dense inversion
layers propagating over topographic obstacles (Dobrinski et al. 2001). Examples in the
ocean are the internal hydraulic jumps likely to develop in dense overflows downstream
of a sill, such as: the overflow of Mediterranean Waters over the strait of Gibraltar
(O’Neil Baringer & Price 1997a,b); the overflow of Arctic Waters over the Denmark
Strait; and the overflow of Antarctic Bottom Water through the Vema Channel
separating the Argentinian and Brazilian basins (Hogg 1993). Actual hydraulic jumps
have been inferred from observations and numerical simulations only for a few of
these dense overflows; more detailed observations in the near future should reveal
whether they are present in all of them (See also Nash & Moum (2001) for a clear
observation of a hydraulic jump over a smaller scale obstacle within the continental
shelf of Oregon.) Gravity currents (Benjamin 1968; Simpson 1997) are also limiting
cases of bores, in which the state ahead of the bore is largely homogeneous. Simple
experiments with two-layer fluids show that internal jumps develop as naturally in
stratified flows as they do in free-surface flows of shallow, homogeneous single layers
(Long 1954; Wood & Simpson 1984). This can be seen analytically too, though the
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mathematics and physics become subtler as one switches from discrete layers to a
continuously stratified profile.

Very little is known, however, about the nature and structure of internal shocks.
Even in the simplest possible scenario of two-layer flows, the problem remains wide
open. Conservation of mass and momentum still yield two jump conditions. However,
if fluid from one layer is entrained into the other at the jump, a new unknown
appears (the amount of entrainment) for which no physical conservation principle
is readily available. Existing literature (Armi 1986; Baines 1995; Klemp, Rotunno
& Skamarock 1997; Lawrence 1990, 1993; Wood & Simpson 1984; Yih & Guha
1955) concentrates mostly on the case of jumps that do not involve any mixing.
Pawlak & Armi (2000) present interesting experimental work on fluid entrainment in
downslope flows downstream of a hydraulically controlled sill. However, they arrange
their experimental setting so that the flow is supercritical throughout the slope, thus
excluding shocks.

A few words are appropriate here about the nature of mixing in oceanic flows. In
the bulk of the global ocean, vertical (diapycnal) turbulent mixing is usually modelled
as being diffusive in nature, with a diffusivity about two orders of magnitude above
the molecular one (Ledwell et al. 2000). The energy behind this turbulent diffusivity
often comes from sources which are external to the particular layers being mixed;
tides are an ubiquitous example of such an external source. A description of this
externally driven diffusivity is provided in classical work by Ellison & Turner (1959)
and Turner (1986); see also Balmforth, Llewellyn Smith & Young (1998) for a more
recent approach. However, particularly violent mixing phenomena, such as strong
downslope flows, provide their own source of energy. In this context, mixing is
generally thought to occur through shear instability (Howard 1961; Miles 1961). This
idea has been incorporated into large-scale ocean models through parameterizations
such as Hallberg’s (2000), which switch from externally supplied to self-driven mixing,
based on the local Richardson number. Still, this framework implies mixing only over
relatively extended spatial domains. However, if internal hydraulic jumps develop
within downslope flows, they must involve a considerable amount of strongly localized,
self-supplied mixing.

This paper focuses on highly entraining standing internal hydraulic jumps, such as
those likely to occur in permanent dense overflows. These are different from internal
bores propagating into a state at rest (Klemp et al. 1997; Lane-Serff & Woodward
2001), in that the sign of the vorticity at the interface between the lower layer of
dense fluid and the ambient is such that it favours entrainment of ambient fluid into
the lower layer. For strong jumps, it is conjectured that this entrained fluid will be
rapidly mixed throughout the layer by the strong turbulence generated at the jump,
thus rendering the lower layer nearly uniform, both in density and in velocity.

For concreteness, here we will look at the simplest setting for internal hydraulic
jumps: a ‘one-and-a-half-layer’ flow. This is a two-layer flow constrained by upper
and lower rigid lids, in which the height of the upper layer is very large, the
density difference between the two layers is small, and all mixing occurs through the
entrainment of upper fluid into the lower layer. Even in its simplicity, this scenario is
not unrealistic for many flows of geophysical significance, such as dense overflows over
sills. The density changes brought about by the entrainment process make developing
a closure for the jump conditions a non-trivial matter. The closure proposed here
is based on the energetic considerations described in §§3 and 4. In fact, we develop
two closures. The first one is a partial closure. It does not consist exclusively of jump
conditions, but also of a jump inequality, arising from a bound on the amount of
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b u h F] F2
Lower bound { d=2 0.588 0.358 4.738 3.953 0.848
for b d=3 0.508 0.298 6.589 5.054 0.824
Partial Lower bound { d=2 1 0.229 4.365 3.422 0.375
Closure for u d=3 1 0.182 5.486 4218 0.328
Upper bound { d=2 0.654 0.274 5.572 4.082 0.585
for h d=3 0.567 0.226 7772 5.279 0.567
Lower bound { d=2 0.641 0.382 4.079 3.457 0.816
for b d=3 0.547 0.313 5.824 4.537 0.797
Lower bound { d=2 1 0.267 3.732 2971 0412
for u d=3 1 0.208 4.791 3.724 0.355
Upper bound { d=2 0.701 0.303 4.705 3.576 0.596
Full for h d=3 0.603 0.245 6.767 4.734 0.574
Closure Upper bound { d=2 0.673 0.318 4.658 3.595 0.647
for F, d=3 0.581 0.255 6.721 4.751 0.615
Lower bound { d=2 1 1 1 1.892 1.892
for Fy d=3 1 1 1 2.149 2.149
Upper bound { d=2 1 1 1 1.892 1.892
for F, d=3 1 1 1 2.149 2.149
Lower bound { d=2 1 0.267 3.732 2971 0.412
for F, d=3 1 0.208 4.791 3.724 0.355

TaBLE 1. Bounds for b, u, h, the ratios (downstream over upstream) of the values for the buoyancy,
velocity and height of the lower layer, respectively; and for F; and F,, the Froude numbers upstream
and downstream; d is the dimensionality of the turbulence, either 2 or 3. The bounds found are in
bold font; the values of the remaining variables when the bounds are achieved are in regular font.

turbulent energy that a stratified flow may possess. The second one is a full closure,
obtained by turning the bound on the turbulent energy into an equality. This is
justified for highly entraining internal hydraulic jumps that are maximally turbulent
both upstream and downstream of the jump.

Our closure hypothesis can be summarized in a few words: that most of the energy
dissipated in strong, entraining internal hydraulic jumps goes into turbulence. Then,
a bound on the amount of dissipation follows easily, since a stratified fluid can
only develop a certain amount of turbulence, without being mixed further. Both the
partial and the full closures yield bounds on the various quantities involved in the
jump. These bounds are in fact quite surprising: we bound the amount of allowable
entrainment, the Froude numbers of the flow before and after the jump, and the
height and velocity ratios between the two sides of the jump — bounds with analogues
in gas dynamics, but not in hydraulics. We believe that these bounds are realized by
turbulent hydraulic jumps, such as those likely to appear in oceanic dense overflows.

The bounds that we found are summarized in table 1. There, b, u and h denote the
ratios (downstream over upstream) of the values for the buoyancy, velocity and height
of the lower layer, respectively; F; and F, are the Froude numbers upstream and
downstream; and d is the dimensionality of the turbulence, assumed to be either two-
dimensional (d = 2) or three-dimensional (d = 3). Real flows should lie somewhere in
between these two extremes. The numbers in bold font are the bounds found, while
those in regular font give the values of the remaining variables when the bounds are
achieved. The bounds are split into two sections, corresponding to the partial closure
and to the full closure, respectively.

The lower bounds on b are particularly relevant, since they imply that the volume
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flow of dense fluid should roughly double across a strong internal hydraulic jump.
This result is consistent with observations of the Mediterranean outflow, which
roughly doubles within the Gulf of Cadiz (O’Neil Baringer & Price 1997a), and of
the Denmark Strait overflow, which also doubles within a few hundred kilometres
downstream of the sill (Saunders 2001). We conjecture that such doubling of the flow
should also take place for Antarctic Bottom Waters on their way from the Antarctic
continental shelf to the ocean floor. Currently, there are not enough observations
available to validate this conjecture, but large-scale expeditions are planned for the
near future that will provide the needed data.

The reason why we obtain bounds instead of precise numbers, even for the full
closure, is that we are not assuming any knowledge about the states upstream or
downstream of the jump. In fact, once the Froude number upstream F; is specified,
we can make precise predictions; these are reported in §6.3, and constitute an ideal
benchmark to test our theory against experiments.

Finally, it is physically clear that no hydraulic jumps should be possible without dis-
sipation. It is interesting to note that this result follows easily from our mathematical
formulation; see §§ 3 and 5 for more details.

The rest of the paper is structured as follows. In §2, we introduce the one-and-a-
half-layer model, describe the closure problem, and discuss existing closures in the
literature. In §§3 and 4, we introduce our partial closure hypothesis: an inequality
based on energetic considerations involving turbulent flows. In §5, we explore the
consequences of this hypothesis, and find the resulting bounds on all dynamical
quantities, including the amount of entrainment. In §6, we explore the consequences
of a stronger hypothesis: that the flow is maximally turbulent both upstream and
downstream of the jump. This hypothesis leads to sharp predictions, that can be
validated against observations and experiments. Finally, in § 7 we discuss the validity
and relevance of the results obtained.

2. The simplest setting

In this section, we describe what we believe to be the simplest scenario that captures
the closure problem for entraining hydraulic jumps: a two-dimensional, ‘one-and-a-
half” layer model, under the Boussinesq approximation.

Since we envision applications of our work to oceanic flows, some words are in
order regarding the effects of rotation on internal breaking waves. There is a relatively
widespread belief in the geophysical community that rotation inhibits shock formation
(see, however, Houghton 1969; Pratt, Hefrich & Chassignet 2000). One of the reasons
why shocks are rarely thought of in a geophysical context is a misguided analogy
with the Rossby adjustment problem, in which an initial discontinuity resembling a
shock is allowed to evolve in a rotating environment, leading to the establishment of
a smooth steady state in geostrophic balance. This appears to indicate that shocks are
not robust objects in the presence of fast rotation. Yet this is a wrong interpretation
since, even without rotation, the Rossby adjustment problem —which becomes the dam
breaking problem of hydraulics—is dominated by a strong rarefaction wave, with a
much weaker leading shock. A more general reason why shocks are largely neglected
is that they do not appear in the quasi-geostrophic (QG) approximation, which is
frequently used to model flows with fast rotation. However, one must remember that
the QG approximation filters all gravity waves, by assuming the relevant scales to be
long and the velocities weak. Hence, shocks are excluded from consideration ad initio.

Mathematically, one may argue that non-differentiated terms, such as the Coriolis
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FIGURE 1. Two-layer flow with entraining internal hydraulic jump.

acceleration, cannot affect the local behaviour at shocks. On more physical grounds,
one should compare an estimate for the width of a hydraulic jump with a typical
value for the internal radius of deformation of the ocean. Since the former ranges
in the hundreds of metres, and the latter in the tens of kilometres, one may safely
conclude that the effects of rotation on the jump are, if not negligible, certainly
far from dominant. This is not to say, of course, that rotation does not play a
fundamental role in establishing the flow in the context of which the jump may occur.
In particular, downslope flows in a rotating environment tend to attach themselves
to lateral boundaries. As far as the jump conditions are concerned, however, the role
of rotation is clearly minor.

In order to introduce the model, consider the configuration depicted in figure 1,
consisting of a standing internal hydraulic jump within a two-layer flow, in a channel
with rigid top and bottom lids, separated by a distance H. Since the top layer will
be assumed to be much deeper than the bottom one, and thought of as an ambient,
we will use the superindex a to identify the corresponding variables, such as the
velocity and density, while no superindices will be used for the variables representing
quantities associated with the bottom, active layer. Thus h, p and u represent the
height, density and velocity of the bottom layer, while H — h, p* and u” represent
the same quantities for the top, ambient layer. We will denote by P the pressure at
the top rigid lid. Since we only consider hydraulic jumps in which all entrainment
takes place from the ambient fluid into the bottom layer, the ambient density p“
is a constant, while p is not. Subindices 1 and 2 are used to denote the values of
the corresponding variables to the left and right of the jump respectively (that is,
upstream and downstream of the jump). As we will see below, in the limit of a very
deep ambient, the system reduces to a simple one, involving only quantities associated
with the bottom layer.

Three constraints are immediate for the variables involved in the jump: global
conservation of mass, horizontal momentum and volume; the last since the flow is
assumed to be incompressible. Conservation of volume yields

[hu -+ (H — h)u] = 0. (2.1)

Here and throughout this paper, the brackets stand for the jump of the enclosed
expression across the shock, ie. the difference between its values downstream and



68 D. M. Holland, R. R. Rosales, D. Stefanica and E. G. Tabak
(@ (b)

R — —_——

FIGURE 2. Distinction between internal bores (a) and hydraulic jumps (b). The velocities, represented
by straight arrows, are drawn in a frame of reference in which the shock waves do not move. The
curved arrows show the sign of the vorticity at the interface between the two layers, favourable to
entrainment of ambient fluid only for the hydraulic jump.

upstream. Conservation of mass yields

[phu 4+ p“(H — h)u’] = 0. (2.2)
Equations (2.1) and (2.2) can be combined into one for ‘conservation of buoyancy’,
[bhu] = 0, (2.3)
where b is the reduced gravity or buoyancy
p—p°
b= , (2.4)
p¢ ¢

and g is the acceleration due to gravity.

In order to write down the equation for global conservation of momentum, we
need to compute the momentum flux and the vertical integral of the pressure on both
sides of the jump. The former is given by

phu’ + p*(H — h)(u“)?,
while the latter, using the hydrostatic approximation, takes the form
PH + gp*{3(H — h)* + (H — h)h} + 1gph* = Lgp*H*> + PH + 1 p“bh*.
Hence global conservation of momentum yields
[phu® + p*(H — h)(u")* + PH + 1p“bh*] = 0. (2.5)

Up to here, we have only made the following assumptions: vertically uniform flow
within each layer, hydrostatic balance away from the jump, and that all entrainment
takes place from the upper to the lower layer, with the entrained fluid rapidly mixed
throughout the latter. At this point, however, we need to make stronger assumptions,
in order to reach closure.

First, we need to clarify the distinction between a bore and a hydraulic jump
(Baines 1995; Klemp et al. 1997). Schematic representations of both are depicted
in figure 2, in frames of reference moving with the shocks. For the bore, which is
in reality moving to the left into an area of quiescent flow, this choice of frame
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of reference implies that the velocities upstream of the bore are equal in sign and
magnitude. Then, downstream, volume conservation implies that the velocities are
still equal in sign, but that the velocity of the lower, expanding layer is smaller than
that of the upper layer. By contrast, the hydraulic jump has velocities of opposite
sign in the two layers, both upstream and downstream of the jump. This corresponds,
in the geophysical situation of dense overflows, to light ambient water flowing near
the surface against the deep overflow, in order to replenish its source. In Klemp et al.
(1997), it is argued that the resulting signs of the vortex sheets at the interface between
the two layers is such that it favours entrainment of ambient fluid into the lower
layer for hydraulic jumps, but not for bores. Thus, for hydraulic jumps, most of the
energy dissipation takes place in the lower, expanding layer—a situation analogous
to that of external, single-layer jumps. On the other hand, the expanding layer may
even experience an energy increase across internal bores (Klemp et al. 1997).

In this paper, we consider internal hydraulic jumps. This is consistent with our
hypothesis of exclusively downward entrainment. It also implies a closure for the
pressure P at the top rigid lid. Since there is no or little dissipation in the upper layer,
P satisfies, at least approximately, Bernoulli’s principle:

L' + P] = 0. (2:6)

Some words are in order about this closure, since variations of it have occupied
most of the discussion in the theoretical literature on internal shocks to date. The
approaches range from an ad hoc closure for the form drag between the two layers in
Yih & Guha (1955), to the mutually exclusive assumptions that all energy dissipation
takes place in either the lower (Wood & Simpson 1984) or the upper layers (Klemp
et al. 1997). The closure proposed in Klemp et al. (1997) is the most adequate for
bores. However, for the internal hydraulic jumps considered in this paper, one should
enforce a condition similar to the one proposed in Wood & Simpson (1984), though
without the inconsistencies brought about there by the lack of a distinction between
bores and hydraulic jumps, and the neglect of the effects of mixing on the density of
the lower layer.

Next, we will make the approximation that the ambient layer is much deeper
than the bottom one. This approximation simplifies the mathematics of the problem
significantly, and it is also quite realistic for most instances of geophysical dense
overflows. Equation (2.1) can be integrated to

hu+ (H — hyu* = Q, (2.7)

where Q is the volume flow through the shock. For hydraulic jumps, Q is arguably
small, or at least bounded, even as H gets very large. In the context of dense
overflows, —Q represents the amount of water at the source of the overflow lost
due to evaporation, as in the Mediterranean and Red Seas, or to freezing, as in the
Antarctic continental shelf. Hence, for hydraulic jumps, the assumption that H > h
implies that |[u’] < |u|. This allows us to neglect the second term in (2.5), and, using
(2.6), also the third term.

In order to simplify equation (2.5) even further, we notice that, in most oceanic
applications, p and p“ are very close to each other. Thus, we can make the Boussinesq
approximation, and replace p in the first term of (2.5) by p“. This leads to the
following, much reduced, form of the momentum equation:

[hu* + 1bh*] = 0. (2.8)

In cases where the buoyancy b does not change across the hydraulic jump, i.e. if there
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is no significant entrainment, equations (2.3) and (2.8) provide the necessary pair of
jump conditions for the two dynamical variables u and h. These jump conditions are
in fact the same as the standard ones for external hydraulic jumps, with reduced
gravity b. Essentially, this is the approach taken in Klemp et al. (1997), Wood &
Simpson (1984) and Yih & Guha (1955), with qualifications given by their various
closures for the pressure and their consideration of the case with finite ambient depth.
This approach makes sense for bores, where the sign of interfacial vorticity does not
favour entrainment. However, for internal hydraulic jumps of the kind studied here,
entrainment at the jump could be considerable, affecting significantly the buoyancy of
the fluid. Hence we need one more equation— or, rather, one more physical principle —
for closure. A proposal on how to fill this gap, and an exploration of its consequences,
constitutes the rest of this paper.

3. Energetic considerations

Where should we look for the missing physical principle needed to close the system
of jump conditions for internal hydraulic jumps? It is typical in mechanics that, once
mass and momentum have been considered, one searches for missing clues in the
principles of conservation of angular momentum and energy. Both principles play
important roles at internal hydraulic jumps: the former, in setting the vorticity of
the jump’s main roll, as well as the torque of the non-hydrostatic component of the
pressure; the latter, in determining the jump’s irreversibility, through energy transfer
from the well-ordered mean flow, to highly unorganized turbulent and eventually
thermal motion. The issues arising from considerations of angular momentum will be
described in Holland & Tabak (2002); see also Valiani (1997). Here, we concentrate
on energetic considerations, which we believe are crucial in determining the main
properties of internal hydraulic jumps.

Energy considerations are not newcomers to jump conditions in fluid systems. It is
instructive to notice how different a role they play in regular hydraulics versus gas
dynamics. In both systems, mass and momentum conservation for standing shocks
take a form nearly identical to that in (2.3) and (2.8). In hydraulics,

[hu] =0, [phu® +p] =0,

where p is the hydrostatic pressure, integrated vertically over the water height h, and
p is the constant density of water. In gas dynamics,

[pu] =0, [pu’+p] =0,

where u is the fluid velocity, p is the (variable) density, and p is the pressure. In both
cases, we can add an energy equation, i.c.

[%pu3 + pu + pue] =0
for gas dynamics, and
[%phu3 + %gphzu + pu + phue] =0 (3.1)

for hydraulic jumps. The slight difference arises from the existence of a potential
energy in hydraulics, which has no gas-dynamical analogue. The new variable e
represents the internal energy of the gas and, in hydraulics, all forms of energy not
accounted for by the mean flow. These are usually conceptualized as mostly thermal,
but, in reality, have a strong turbulent component, in addition to the surface and
gravitational energy residing in the air bubbles entrained into the flow. For undular
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hydraulic jumps, there is also a wave radiation component to the energy. This wave-
energy is not modelled well by equation (3.1), since it is not associated with water
parcels and therefore does not travel at the mean speed of the fluid.

There is a far more significant difference between hydraulics and gas dynamics. In
the former, the integrated pressure p is a function of the height h. Hence the equations
for mass and momentum constitute a closed system, and the energy equation can be
used as a diagnostic for the amount of energy dissipated. In gas dynamics, on the
other hand, the pressure p is a function of the density p and the internal energy e,
through the equation of state. Thus the energy equation is strictly required to close the
system. Our proposal for internal hydraulic jumps lies somewhere in between these
two extreme cases. We relate p and e through an inequality instead of an equation
of state, and use it as a diagnostic tool. For highly entraining flows, we turn this
inequality into an equality, thus obtaining a full closure.

In order to focus the discussion, we write the system of equations (2.3) and
(2.8), together with an energy equation involving the yet unspecified ‘internal energy’
density e:

[bhu] = 0, (3.2)
[hu® + 1bh*] = 0, (3.3)
[1hu® + bh*u + hue] = 0. (3.4)

The derivation of the energy equation (3.4) follows the same pattern as that of the
momentum equation, under the assumption that the internal energy e, consisting of
all forms of energy not accounted for by the mean flow or by the potential energy, is
transported by the fluid. This excludes from our discussion the undular jumps, where
radiation of wave energy plays an important role. It also excludes the—necessarily
weak — jumps where much of the energy goes into organized, as opposed to turbulent,
shear. Our contention is that, for strong enough jumps, turbulent mixing homogenizes
the flow, destroying most organized shear, as well as suppressing most radiating waves.
We restrict our discussion to jumps satisfying this condition.

The system (3.2)—(3.4) could be closed by specifying an ‘equation of state’ relating
b, h and e, if this made physical sense. Before going in this direction, we explore how
the energy equation can help to close the system, by considering first the case with no
energy dissipation, i.e. [hue] = 0. We expect no hydraulic jump to be possible under
such conditions, since hydraulic jumps dissipate energy. Proving this statement has
independent interest; it will also help us obtain the algebra involved in extracting
meaningful information from the highly nonlinear system (3.2)—(3.4).

We index the variables upstream of the jump with 1, those downstream with 2, and
introduce the non-dimensional ratios

Us h2 b2
= — h = — b = — .
and the Froude numbers
|uj
F;, = . 3.6
= (36)
We also note that hydraulic jumps must satisfy the ‘entropy’ conditions
u<l, h=>=1, b< 1. (3.7)

The last of these follows from the fact that the fluids can only mix, not ‘unmix’, at
the jump. The other two are standard in regular hydraulics: that the flow decelerates
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and expands across the jump follows from the the condition that the flow needs to
switch from a supercritical to a subcritical regime.

Notice that we use the following notational convention, that should not introduce
confusion: Within the context of discussing conditions at hydraulic jumps, u, h and b
always denote the non-dimensional ratios above. When discussing general equations
applying to the flow, u, h and b denote, respectively, the flow velocity in the bottom
layer, the height of the bottom layer, and the buoyancy, as defined in (2.4).

The jump conditions (3.2)—(3.4), together with [hue] = 0, can be rewritten as

bhu =1,
11 1h1
I+ - =hi+--=
tap Tty
2 2
1+ = =hd +h=.
—|—F12 u + P2

The last two equations can be combined to eliminate F;:
h
32+ 5 - 2hu* + 300 + Y’ = 0. (3.8)

The statement that no hydraulic jump is possible without energy dissipation is
equivalent to:

for h = 1 and u < 1, equation (3.8) has no solution other than h =u = 1.

To prove this, we note that the same result should hold on inverting h, u and b (after
all, with no dissipation, there is no particular difference between up- and downstream).
Introducing the symmetrized variables

1

1 1
x_b_l—g_hu—}_hiu’ y_u—'l_;)

we can recast (3.8) as
3(x—2)+(y—2)*=0.
From their definitions, x,y = 2, and therefore x = y = 2, corresponding to b = h =
u = 1. This concludes the proof.
In § 5, we will show that not only [hue] # O for internal jumps, but in fact [hue] > 0.

In other words, internal energy must be generated at a hydraulic jump, as one would
expect in any dissipative process.

4. A partial closure for the energy

In order to develop a closure, we need to make some assumptions on the nature
of the internal energy e. What is this energy composed of? By taking the two fluids
to be miscible, as is the case in most geophysical applications, we exclude any energy
from going into surface tension. We have already excluded wave and organized shear
energy, by assuming the flow immediately downstream of the jump to be highly
turbulent and hence well-mixed, both vertically (suppressing shear) and horizontally
(averaging out waves). The two main remaining forms of energy are thermal and
the kinetic energy of the turbulence itself. We now argue that, in the neighbourhood
of strong hydraulic jumps, the latter dominates over the former (see Rouse, Sato &
Nagaratnam 1959 for a classical account). Given the small viscosity of water, in order
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for the mechanical energy of the incoming flow to be dissipated into heat, it needs
to cascade through a long inertial range of scales. In this inertial range, the flow
is essentially inviscid, and can best be described as turbulent. Eventually, most of
the turbulent energy cascades down to the dissipation range, and becomes thermal.
However, this takes far more time than the fluid spends in a neighbourhood of the
jump.

Thus we assume that e is composed almost exclusively of turbulent energy. Fur-
thermore, we will assume that the turbulence is roughly isotropic. Notice that it is
not a priori clear whether the number of dimensions over which the turbulent energy
is partitioned should be taken to be two or three. It is conceivable that there is
a two-dimensional component to the turbulence, associated with the main vortex
of the jump, and a comparable three-dimensional component, resulting from energy
equipartition at smaller scales. Thus we will leave the dimensionality of the turbulence
open,; it is likely that an intermediate number between two and three best represents
real flows. As it turns out, the sensitivity of our predictions to dimensionality is fairly
small.

In short, we assume that the internal energy density (per unit mass and unit height)

of the fluid has the form
1 h
e = d(/ %(w2> dz) , (4.1)
h Jo

where d is the number of dimensions (somewhere between two and three), w is the
vertical component of the velocity, z is the vertical coordinate, and (w?) indicates the
average of w? over the turbulence space and time scales.

We shall now show that simple physical arguments allow us to bound this turbulent
energy e by an expression of the form

0<e<%M. (4.2)

This constitutes our turbulent partial closure: a bound on the amount of turbulent
energy that a layer of fluid may contain without immediately mixing further. A way
to see this that we find particularly insightful is through a thought experiment (as
an aside, such an experiment can be realized in the laboratory with present fluid
measurement technology, something that we plan to do in the near future).

Consider a bucket containing a homogeneous fluid, and assume that we have
devices to excite turbulent motion in the fluid interior. Our contention is that the
amount of turbulence at a given depth z cannot be made arbitrarily large without
the fluid spilling out. This is because the pressure within the turbulent region of the
fluid may exceed the weight of the fluid above it. To see this, consider a horizontal
plane cutting through the fluid at depth z. The pressure on this plane needs to
balance exactly the weight of fluid above, else the fluid will accelerate. The physical
origin of this pressure lies in three distinct sources: intermolecular repulsive forces,
which oppose compression; momentum transfer by thermal molecular motion; and
macroscopic momentum transfer by parcels of fluid in turbulent motion. This last
turbulent component to the pressure, Pr, is given by

Pr = p(w?). (4.3)

This is entirely analogous to the conceptualization of pressure in kinetic theory of
gases, as the momentum transfer by molecular thermal motion. In our case, the
momentum flux through the plane will be given by the momentum itself pw times its
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transfer rate w, giving rise to (4.3). If Pr should exceed the weight gpz of fluid above
the plane, this fluid will accelerate up and detach from the fluid below, since the other
two components of the pressure cannot be negative. Hence we need to have

(w?) < gz. (4.4)

When the turbulent fluid layer in the bucket underlies another layer with lighter
fluid, the argument leading to (4.4) remains valid if one replaces the gravity constant
¢ by the reduced gravity b = gAp/p. Hence (4.4) becomes

(W?) < bz. (4.5)

Placing (4.5) into (4.1), we obtain the inequality (4.2).

The bound in (4.2) seems to agree rather well with the available experimental
evidence. Figure 16 of Pawlak & Armi’s paper on entrainment in stratified currents
(Pawlak & Armi 2000) depicts a ‘RMS Froude number’ which, in our notation, is
defined by

(u—u)?
bh
where the bars indicate averages in the same sense used in equation (4.1); i.e. both
over the thickness of the layer and over the turbulence scales. Using our assumption

of turbulence isotropy, the definition in (4.1), and the bound in (4.2), we obtain

Fims = \/> \| = db \/7 ~ 0.71. (4.7)

This upper bound agrees quite well with the measured values for F,, in the region of
high entrainment rate, just downstream of the experimental sill. Further downstream,
in a region of highly reduced entrainment, this value is decreased roughly by a factor
of two, to F,,s ~ 0.35.

It seems likely that, in the neighbourhood of a very strong hydraulic jump, the
right-hand inequality in (4.2) should become an equality. The reasons are different
for the flows immediately upstream and immediately downstream of the jump. The
former, being supercritical, typically downslope, and highly turbulent, would have
been entraining ambient fluid before encountering the jump. Hence it would be in
a state right at the critical value for the turbulence discussed earlier and leading to
(4.2). On the other hand, the level of turbulence in the flow immediately downstream
is determined by the jump, which presumably would tend to maximize the conversion
of the kinetic energy of the upstream flow into turbulence and entrainment. We will
postpone any consideration of this scenario of maximally turbulent flow to § 6, after
fully exploring, in § 5, the consequences of the inequality in (4.2).

Frms =

(4.6)

5. Bounds following from the partial closure

For the reader more interested in the physics of internal hydraulic jumps than
in their mathematical analysis, we emphasize that all of our modelling assumptions
have been made at this point. The manipulations in this section, leading from these
assumptions to the bounds summarized in table 1 from § 1, are purely algebraic, and
do not contain any hidden extra physical hypotheses.

With the partial closure (4.2) in hand, we can revisit the jump conditions. We recall
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that b, u and h are non-dimensional ratios; see (3.5). Equation (3.4) becomes
%hzug + bzhguz + hotrer, = %hluf + blhful + huyey.
Dividing by %hluf, and using the fact that bohyu, = byhjuy, we obtain
;lz(h— 1)+2hu% =1 —hd +2%;
here, F; is the Froude number upstream. Similarly, we divide both sides of the jump
condition (3.3) by hju?. The full set of jump conditions becomes

bhu =1,

1/h 1
“(==1) 5 +m*—1=0
2<u >F12+u )

2 2 3
F—lz(h— 1)+ u—%(huez —e)=1—hu.
Solving for F} in the second equation and for the energy terms in the third equation,
we obtain

bhu = 1, (5.1)
h—u 1 —bu?
2 == ==
Fr= 2u(l — )~ 2u(b—u)’ (52)
4F} e B 1 2 1
u%(b—u)<b—el>—<u+u—2> +3(b+-2). (5.3)

The partial closure inequality (4.2) applied to the flow downstream of the jump can
be written as

4F?
0< T{uez <d. (5.4)
Since e; = 0, the left-hand side of (5.3) can be bounded, using (5.4), as follows:
4F? e 4F} b —u b—u 11
—(b— = — <———e<d—=d|-—+). 5.5
us u)(b el) ui b - bu u b (5:3)

From (5.3) and (5.5), we obtain

2
il oY (bt o) <a(1_1),
u b u b

which can also be written as

3b+@<4u+di4—u2—i. (5.6)
b u u?
Using the fact that u,b < 1 and the inequality (5.6), it follows that u < b, since the
right-hand side of (5.6) can be bounded from above by 3u + (d 4+ 3)/u. Thus, the
implicit constraint in (5.2), i.e. b > u, is satisfied so long as inequality (5.6) holds.
We also have to impose the entropy conditions (3.7), i.e.

u<l, h=1  b<l (5.7)

We conclude that all the conditions deriving from the conservation equations and
our partial closure that b, u and h have to satisfy are (5.1), (5.2), (5.6) and (5.7).
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One final remark: it is easy to see, from the jump conditions, that the internal
energy flow across a hydraulic jump can only increase, i.e. that

[hue] > 0.

This follows by noticing that the right-hand side of (5.3) is positive if a jump exists,

re.ifu <1, b < 1. Then,

%—€1>0.

From (5.1), it results that
e, [hue]

— — ey =uhey; — e =

b

uthy’
and therefore [hue] > 0.

5.1. Bounds on b, u and h

The inequality (5.6) turns out to be very important in establishing relevant bounds
for b, u and h, i.e. lower bounds for b and u and an upper bound for h. To further
analyse the right-hand side of (5.6), we introduce the function

d+4 1

g (011 > R, gu)=du+ T2
u u

On the interval (0, 1], g is concave and has one global maximum, denoted by M.
Then, from (5.6), it follows that

3b+ ‘3%3 <M. (5.8)

Since the left-hand side of (5.8) is a decreasing function of b on the interval (0, 1],
the minimum possible value of b is achieved when equality is realized in (5.8). Using
Newton’s method to compute M, and then solving the quadratic equation associated
with (5.8), we find the minimum value of b. For d = 2, we obtain

b > 0.588.

Equality is realized for u = 0.358 and h = 4.738. Here, and throughout the rest of the
paper, the numerical results are truncated after the third decimal digit. For d = 3, we
obtain

b = 0.508,

with equality realized for u = 0.298 and h = 6.589.
We now turn our attention to finding a lower bound on u. The left-hand side of
(5.6) is a decreasing function of b on (0, 1]. Therefore,

d+6 < g(u).

On the interval (0, 1], the function g(u) increases from —oo to M and then decreases
to d + 6. The minimum value of u can be obtained by solving g(u) = d + 6 and
eliminating the solution u = 1. Using Newton’s method, we obtain, for d = 2, that

u = 0.229.

Equality is realized for b = 1 and h = 4.365. For d = 3, we obtain
u>0.182,

with equality realized for b = 1 and h = 5.486.
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To establish an upper bound on &, we use the fact that b = 1/uh and rewrite (5.6)
as

4 1
hzu(d+3)—h<4u+d+ —u2—2>+3<0. (5.9)
u u u
In other words
h < max h,,
ue(0,1]

where h, is the largest of the two solutions of the quadratic equation associated with
(5.9). We use once again Newton’s method and obtain, for d = 2, that

h < 5.572.

Equality is realized for b = 0.654 and u = 0.274. For d = 3, we obtain
h <7772,

with equality realized for b = 0.567 and u = 0.226.

6. A full closure for the energy

In this section, we develop a closure for strong hydraulic jumps based on the
assumption that the upper bound in (4.2) is in fact an equality. As mentioned in §4,
for strong hydraulic jumps, the flows both upstream and downstream of the jump
should be maximally turbulent: the former due to its highly supercritical nature; the
latter so as to maximize the irreversibility of the jump. This hypothesis seems to
agree rather well with the observations reported in Pawlak & Armi (2000) for the
initial highly entraining region of a dense overflow; see the discussion at the end
of §4. We now proceed to explore the consequences of this closure hypothesis.t Its
full validation, of course, should come from detailed observations of real overflows,
of the kind that state of the art oceanography appears to be ready to obtain. In
fact, a motivation for pursuing a full closure is that it allows us to make sharp
quantitative predictions of the relation between the various variables involved in an
internal hydraulic jump. These predictions, developed in §6.3, are ideally suited to
test our theory both in the real ocean and in the laboratory.

Throughout this section, we assume the following form for the internal energy
immediately upstream and downstream of the jump:

d d
e = Zblhl and €y = szhz. (61)
Equation (6.1) can be recast as
2 2
4@61 =d and 4@62 = ﬁ
uy uy u

Moreover,

4F2 %) d 1 1
= (§F—e) == (g —d) =d(ur b= ).

+ If mathematical beauty and compactness is to be taken as a sign that the underlying physical
theory holds some degree of truth (as it has so often been the case through the history of science),
then we hope that the reader will agree with us, after reading this section, that our hypothesis may
not be completely at odds with reality.
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Then, the energy equation (5.3) becomes

2
d<u+1—b—1>=<u+1—2) +3<b+1—2>. (6.2)
u b u b

Employing once again the notation x =b+ 1/b and y = u + 1/u, we can recast (6.2)
as
dy —x) = (y —2)* +3(x — 2). (6.3)

Since u,b < 1 and x > 2, it follows from (6.3) that y > x and therefore b > u. In
other words, the implicit constraint that b —u > 0 from (5.2) is satisfied. Thus b, u
and h only have to satisfy (5.1), (5.2) and (5.7), in addition to (6.2).

6.1. Bounds on b, u and h

We now derive relevant bounds for b, u and h. Due to the simplified form (6.3) of
the energy equation, it is possible to compute the lower bounds for b and u without
making use of Newton’s method. Solving for x in (6.3), we obtain

N ) et
d+3

The denominator of the right-hand side of (6.4) reaches its maximum at y = (d+4)/2,
o)

(6.4)

d2
4d+3)
We recall that x = b+ 1/b. Then, for d = 2, we obtain

b= 0.641,

x<2+

with equality realized for u = 0.382 and h = 4.079. For d = 3, we obtain
b > 0.547,

with equality realized for u = 0.313 and h = 5.824.
Since x = 2, it follows from (6.4) that

YV —(d+4)y+2d+4=(y—2)(y—2—-4d) <0,
and therefore that
y=u+ % <d—+2
Let u,,;, be the only solution of u+1/u = d+ 2, so that u,,;, < 1. For d = 2, we obtain
u = Uy, = 0.267.
Equality is realized for b = 1 and h = 3.732. For d = 3, we obtain
u = Uy, = 0.208.

Equality is realized for b =1 and h = 4.791.
The derivation of the upper bound for & is more complicated. Replacing b by 1/hu
in (6.2), we obtain a quadratic equation in h:

h 1 1 1
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In other words,

h < max h,,
ue(0,1]

where h, is the largest of the two solutions of the quadratic equation associated with
(6.5). Using Newton’s method, we obtain, for d = 2, that

h < 4.705.

Equality is realized for u = 0.303 and b = 0.701. For d = 3, we obtain
h < 6.767,

with equality realized for u = 0.245 and b = 0.603.

6.2. Upper and lower bounds on the Froude numbers

In this section, we derive upper and lower bounds for the Froude numbers upstream
and downstream of the jump. A note here is appropriate on the meaning of these
numbers. In regular hydraulics, the Froude number is the ratio of the mean speed
of the flow to the characteristic velocity at which information propagates. The flow
upstream of a jump should be supercritical, i.e. it must have F; > 1, and the flow
downstream should be subcritical, with F, < 1, so that the right amount of infor-
mation reaches the jump through characteristics from both sides. This need not be
the case, however, for two-layer miscible flows. The reason is that the characteristic
speed for flows involving mixing is not necessarily given by \/bh. In order to compute
characteristic speeds, we need to know the equations describing the physics away
from the jump, and these depend on how the mixing process is described. Only under
the assumption that no mixing takes place away from jumps will the Froude numbers
defined in (3.6) have the same meaning as in regular hydraulics. In this paper, we are
only concerned with the jump conditions at internal hydraulic jumps, not with the
partial differential equations away from them, and so we have no control over the
characteristic speeds on either side of the jump. However, the Froude numbers are
still important reference values in internal hydraulics, and so we proceed to determine
what our closure implies for them. Surprisingly, one of these implications is that
indeed F; > 1, just as in regular hydraulics, even though the equations describing the
flow away from the jump are still to be determined. On the other hand, F, is not
necessarily bounded from above by 1. We will derive achievable upper and lower
bounds for both F; and F>.

At first, it may appear puzzling that bounds on the Froude numbers exist: to
our knowledge, they have no analogues in either open channel hydraulics or gas
dynamics. In principle, it can be argued that an experimentalist has absolute freedom
to select the Froude number upstream, which therefore cannot possibly have an
upper bound. However, for an arbitrarily set upstream Froude number, a standing
hydraulic jump need not exist. The bound we derive below suggests that, if an
upstream Froude number is specified above the bound, any jump that develops will
be swept downstream by the flow, i.e. it will not be steady.

In order to derive the aforementioned bounds, we recall the expression (5.2) for Fi,
obtained from the reduced form of the momentum equation:

o 1—b?
T 2ut(b—u)

Equation (6.2) is quadratic in b. Let f(u) be the smaller of its two solutions, i.e.

Fi
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b = B(u) < 1. Then F; can be regarded as a function of u, given by

1= Blup?
Fi(u) = /m. (6.6)

On the interval [u,,;,, 1], the function F;(u) has exactly one maximum point, which
can be found using Newton’s method. The following upper bounds for F; are thus
obtained: for d = 2,

F; < 3.595,
with equality achieved for b = 0.673, u = 0.318, and h = 4.658; and, for d = 3,

Fy <4751,

with equality achieved for b = 0.581, u = 0.255, and h = 6.721.
Moreover, the minimal value of Fi(u) is achieved in the limit as u — 1, and,
therefore, as b,h — 1. Then,

<d+2+ \/d(d+3)>1/2
/ .

Fi = liHllFl(u) =
u—

Ford =2,
F, > 1.892,

with equality achieved in the limit as u, b, h — 1. For d = 3,
F, > 2.149,

with equality once again achieved in the limit as u, b, h — 1.
Establishing bounds for F, can be done similarly. From (3.6) and (5.2), we obtain
that F; = u’F?, and therefore, from (6.6), it follows that

_ fu(l = Bwu?)
Fy(u) = 4 /m. (6.7)

The function F,(u) is increasing on the interval [u,,;,, 1]. Thus, the smallest possible
value for F, corresponds to u = u,,;,. For d = 2,

F, > 0412,
with equality realized for b = 1, u = 0.267, and h = 3.732. For d = 3,
F, > 0.355,

with equality realized for b = 1, u = 0.208, and h = 4.791.
The largest value for F, corresponds once again to the limit case when u — 1, and
is therefore equal to the smallest values for Fy, i.e.

1/2
d+2+/dd+ 3))
: :

F> < lim Fiy(u) = <

Ford =2, F, < 1.892, and, for d = 3, F, < 2.149, with equality in both cases achieved
in the limit as u,b,h — 1.

6.3. Sharp predictions

Within our full closure for internal hydraulic jumps, it is possible to predict sharp
values for all the flow ratios u, b and h across the jump, as well as the Froude



Internal hydraulic jumps and mixing in two-layer flows 81
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Froude number for upstream flow, F; Froude number for upstream flow, F;

FiGure 3. Dependence of u, b, h and F, on F; for: (a,b) d =2 and (c,d) d = 3.

number F, downstream of the jump, as functions of the upstream Froude num-
ber F;. Such predictions, described in this subsection, provide an ideal testing
ground for experimental and observational checks (and refinements) of our closure
assumptions.

The derivation of these values follows the following path. First, we use (6.6) to
compute the velocity ratio u as a function of the upstream Froude number F;. Next
we compute the buoyancy ratio b from b = f(u), where f(u), introduced above, is
the smallest of the two solutions to (6.2). The height ratio h follows from h = 1/bu.
Finally, from (6.7), we obtain the value of F, as a function of F;. These results are
graphically represented in figure 3, for both d =2 and d = 3.

We have dotted the branch of these predictions starting at the maximum value
of F; and ending at a jump with finite strength but no mixing; ie. b = 1. Even
though this branch of results follows formally from our full closure, it is probably
not entirely consistent with its strong hypotheses. In particular, our assumption of
maximal turbulence corresponds to a situation where all excess turbulent energy has
been used for entraining upper fluid. It is clearly hard to reconcile this picture with
the non-entraining, yet strong jump lying at the end of the dotted line in figure 3.

We are not equally concerned about the other end of the predictions, where b =
h =u = 1, corresponding to no jump. Even though the jumps in the neighbourhood
of this point are necessarily weak, they still correspond to a highly turbulent situation,
even though most of this turbulence is not generated by the jump, but already present
in the conditions upstream. In fact, this highly turbulent and entraining character of
the flow is responsible for the curve of F,(F;) not starting at F; = F, = 1, but at a
much higher value.
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7. Discussion

In this paper, we propose two closures for strong, highly entraining, internal
hydraulic jumps in two-layer flows. The first is only a partial closure, resulting from
an upper bound on the amount of turbulent energy that the flow can admit. The
second, a full closure, applies to highly turbulent flows, where the upper bound
on the energy can be made into an equality. In this work we make the following
assumptions:

(a) The flow away from the jump is well-described by a two-layer shallow-water
theory. This entails two main assumptions. The first is that the flow away from
the jump is in hydrostatic balance. There is little question that, in most geophysical
applications, this is a good approximation. The second assumption is that both the
velocity and the density remain nearly uniform in both layers downstream of the
jump. The physical intuition behind this is that the upper layer is not greatly affected
by the jump, while the lower one is rapidly homogenized by turbulent mixing.

(b) In the neighbourhood of the jump, most of the energy dissipated by the mean
flow goes into isotropic turbulence, since: (i) for miscible fluids, there is no surface
tension energy; (ii) for strong, highly turbulent hydraulic jumps, turbulence tends to
average away both radiating waves and organized shear; and (iii) the time scale for
the conversion of turbulent energy into heat is much longer than the time spent by
most fluid particles in a neighbourhood of the jump. Note that by neighbourhood
here we mean distances of the order of tens of jump widths.

(c¢) The amount of turbulence in hydrostatic stratified flows is limited by the
buoyancy. If the turbulence becomes too high, the various fluid layers will completely
mix. Thus, the very existence of distinct layers ensures that a critical value is not
surpassed.

(d) For the full version of the closure we further assume that the bound on the
turbulence is, in fact, achieved both upstream and downstream of the jump. In other
words, we assume that the flow is maximally turbulent near the jump.

Out of these closure hypotheses, surprising bounds emerge for the velocity, the
height, and (more significantly) the buoyancy ratios across the jump. Depending on
the details of the closure, the last bound ranges from 0.5 < b < 1t0 0.64 <b < 1.
Strong hydraulic jumps should yield values of b close to the lower bounds, so we
predict the volume flow in the lower layer to increase by 50% to a 100% across them.
This is consistent with flow measurements for both the Mediterranean outflow and
the Denmark Strait overflow, which roughly double within a few hundred kilometres
of the straits—with some evidence that these volume increases occur across very
localized areas of strong mixing (O’Neil Baringer & Price 1997a; Saunders 2001).

Another consequence of the full closure, at least from a theoretical point of view,
is that it implies the existence of upper and lower bounds for the Froude numbers
upstream and downstream of the jump, respectively. This is interesting because no
such bounds exist for ‘regular’ hydraulic jumps in a single fluid layer.

We eagerly await the validation of our theory both by laboratory experiments and
by oceanographic and atmospheric observations:

“Grau, teurer Freund, ist alle Theorie, und griin des Lebens goldner Baum.”
(Goethe).
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